CÓDIGO FUENTE

1.	CLC.cpp
// CLC.cpp  (C) adolfo@di-mare.com

/*  resultado
    Evalúa expresiones aritméticas simples en que los
    operandos son números del 0 al 9.
*/

#include "lex.yy.c"

#if defined(__BORLANDC__)  // Compilando con Borland C++
    #include       // Define bool para BC++ v3.1 o inferior
#endif

#include 
#include 
#include 

#include 


#include 
#include 


template 
class Pila {
public:
    Pila() { _top = 0; }
    void   Push(T d);
    T      Pop();
    T      top() { return _vec[_top]; }
private:
    enum { Capacidad = 132 };
    int    _top;            // tope de la pila
    T      _vec[Capacidad]; // vector para la pila
}; // Pila

template 
inline void Pila::Push(T d) {
    _vec[_top] = d;
    _top++;
}

template 
inline T Pila::Pop() {
    _top--;
    return _vec[_top];
}

typedef char Token; // OJO: Astring sólo funciona para "char"

class nodo{                   //nodo de la lista en que se guarda la cadena en posfijo para evaluarla
public:
	nodo(){numero =-1; operador = ' '; sig = NULL;}              
	nodo(double num){numero =num; operador = ' '; sig = NULL;}   //inicializa un nodo con un numero double
	nodo(char oper){numero = -1; operador = oper; sig = NULL;}   //inicializa un nodo con un operador algebraico
	int esoperador(){if(operador != ' '){return 1;} else{return 0;}}  //devuelve verdadero si el nodo contiene un operador
	int esnumero(){if(numero != -1){return 1;} else{return 0;}}   //devuelve verdadero si el nodo contiene un número
	nodo * sig;
	double numero;    
	char operador;
	
};

class posfiex{                 //lista en que se guarda la cadena en posfijo para evaluarla
public:
	posfiex(){primero = NULL;}      //inicializa la lista con el primero en nulo
	void insertarnu(char * numero){     
	/*  resultado
	inserta un número en en un nodo al final de la lista
	*/
	/*  requiere
    - que la cadena que reciba sea un número
	*/
		if(primero == NULL){
		primero = new nodo(atof(numero));
		}else{
		nodo * actual = primero;
			while(actual->sig!=NULL){
				actual = actual->sig;
			}
			actual->sig = new nodo (atof(numero));
		}
	}
	
	void insertarop(char * operad){       
		/*  resultado
		inserta un operador en en un nodo al final de la lista
		*/
		/*  requiere
	     - que la cadena que reciba sea un operador
		*/
		if(primero == NULL){
		primero = new nodo((char)operad);
		}else{
		nodo * actual = primero;
			while(actual->sig!=NULL){
				actual = actual->sig;
			}
			actual->sig = new nodo (operad[0]);
		}
	}
	nodo * prim(){return(primero);}      // devuelve un puntero al nodo primero
private:
	nodo * primero;
};


class Calculadora {
public:
	Calculadora(const char* exp=0)       { inicio();}
    void operator = (const char* exp) {inicio();}
    double Evaluar();
                        //  expr ==>   term r1
private:                //  r1   ==> + term r1
    void expr();        //  r1   ==> - term r1 | £
    void r1();          //
    void term();        //  term ==>   factor r2
    void r2();          //  r2   ==> * factor r2 | £
    void factor();      //  r2   ==> / factor r2
    void num();         //
                        //  factor ==> ( expr ) | num
                        //
    void aparea(Token); //  num ==> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
	
    void Trabaje();
    void error(const char * msg);

private:
    /*Token*/ char * preAnalisis;   // siguiente token
	/*Astring*/char * _infijo;      // hilera inicial
    /*Astring*/ char * _posfijo;     // hilera resultado
	void inicio();                   //inicializa todas las variables y estructuras usadas
	int tokenact;                    //mantiene el token actual (del lexema que está en preanálisis)
    size_t  _cursor;                 // posición en _infijo
	posfiex lista;                   //lista en que se guarda la cadena en posfijo para evaluarla
};  // Calculadora



void Calculadora::inicio(){            //inicializa todas las variables y estructuras
/*Resultado
	 se inicializan todas las variables que necesita la calculadora
*/

	tokenact = 0;
	_infijo = new char[80]; 
	_posfijo= new char[80]; 
	preAnalisis= new char[80]; 
	strcpy(_infijo,"");
	strcpy(_posfijo,""); 
	strcpy(preAnalisis,""); 
	Trabaje();
}

void Calculadora::Trabaje() {     
/*  resultado
    Traduce a notación posfija la exrpesión almancenada
    en *this.
    - Para evaluarla, hay que invocar a Calculadora::Evaluar().
*/
/*  requiere
    - La expresión almacenada no debe tener errores de sintaxis.
*/

	strcpy (_posfijo, "");
	tokenact =yylex(); 
	strcat(_infijo,yytext);
	if(tokenact != FIN){
    strcpy(preAnalisis, yytext);         //_infijo[_cursor]; // inicializa preAnalisis
    expr();
	}
	else{return;}
	// reconocer la expresión _infijo
} // Calculadora::Trabaje()

void Calculadora::error(const char * msg) {
/*  resultado
    Graba en "cout" un mensaje de error.
    - Indica la posición actual de proceso en al hilera de entrada.
*/
    cout << "ERROR(" << 1+_cursor << ")";
    if (msg != 0) {  // +1 porque _cursor comienza en 0
        if (msg[0] != 0) {
            cout << ": " << msg;
        }
    }
    cout << endl;
} // Calculadora::error()

void Calculadora::expr() {
//  expr ==> term r1
    term();
    r1();
} // Calculadora::expr()

void Calculadora::r1() {
//  r1 ==> + term r1
//  r1 ==> - term r1
//  r1 ==> £

    if (strcmp(preAnalisis, "+")== 0) {              //  r1 ==> + term r1
                                                     
		tokenact = yylex();                          //aparea('+');
		strcat(_infijo,yytext);
		strcpy(preAnalisis,"");
		strcpy(preAnalisis,yytext);
        term(); {{ strcat(_posfijo, "+"); strcat(_posfijo, " "); lista.insertarop("+");}}
        r1();
    } else if (strcmp(preAnalisis, "-") == 0) {       //  r1 ==> - term r1
        tokenact = yylex();                           //aparea('-');
		strcat(_infijo,yytext);
		strcpy(preAnalisis,"");
		strcpy(preAnalisis,yytext);
        term(); {{ strcat(_posfijo, "-"); strcat(_posfijo, " "); lista.insertarop("-");}}
        r1();
    } else { }                             // r1 ==> £
} // Calculadora::r1()

void Calculadora::term() {
//  term ==> factor r2
    factor();
    r2();
} // Calculadora::term()

void Calculadora::r2() {
//  r2 ==> * factor r2
//  r2 ==> / factor r2
//  r2 ==> £

    if (strcmp(preAnalisis, "*") == 0) {              //  r2 ==> * factor r2
        tokenact = yylex();                          //aparea('*');
		strcat(_infijo,yytext);
		strcpy(preAnalisis,"");
		strcpy(preAnalisis,yytext);
        factor(); {{ strcat(_posfijo, "*"); strcat(_posfijo, " "); lista.insertarop("*"); }}
        r2();
    } else if (strcmp(preAnalisis, "/") == 0) {       //  r2 ==> / factor r2
        tokenact = yylex();                            //aparea('/');
		strcat(_infijo,yytext);
        strcpy(preAnalisis,"");
		strcpy(preAnalisis,yytext);
		factor(); {{ strcat(_posfijo, "/"); strcat(_posfijo, " "); lista.insertarop("/"); }}
        r2();
    } else { }                             // r2 ==> £
} // Calculadora::r2()

void Calculadora::factor() {
//  factor ==> ( expr )
//  factor ==>   num
	
    if (strcmp(preAnalisis, "(")== 0) {              //  factor ==> ( expr )
        tokenact = yylex();                              //aparea('(');
		strcat(_infijo,yytext);
        strcpy(preAnalisis,"");
		strcpy(preAnalisis,yytext);
		expr();
        tokenact = yylex();                              //aparea(')');
		strcat(_infijo,yytext);
		strcpy(preAnalisis,"");
		strcpy(preAnalisis,yytext);    
	} else if ( tokenact == NUM) {     //  factor ==>   num /*isdigit(preAnalisis)*/
        num();
    } else {
        error("El factor no es dígito ni '('");
    }
} // Calculadora::factor()

void Calculadora::num() {
//  num ==> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
        strcat(_posfijo, preAnalisis); //preAnalisis
		strcat(_posfijo, " ");
		lista.insertarnu(preAnalisis);
		if(tokenact != FIN && tokenact != ERROR){
			tokenact = yylex();//aparea(preAnalisis);
			if(tokenact != ERROR)
			{
				strcat(_infijo,yytext);
				strcpy(preAnalisis,"");
				strcpy(preAnalisis,yytext);

			}
			else{
				error("El factor no es reconocido por la calculadora");
			}
		}
} // Calculadora::num()



double Calculadora::Evaluar() {
/*  resultado
    Evalúa la expresión contenida en "*this".
*/
	cout << "\nExpresion en infijo:\n" << _infijo << "\n";
	cout << "\nExpresion en posfijo:\n" << _posfijo << "\n";
	
    Pila P;       // pila usada para evaluar _posfijo
    size_t len = strlen(_posfijo);
    if (len==0) {
        return 0;
    }
	nodo * act = lista.prim();
    //for (size_t i=0; i < len; ++i) {  // recorre toda la expresión
	while(act != NULL){
		double op1, op2;
		if (act->esnumero()) {
            // si es un dígito lo mete en la pila
			P.Push(act->numero);
		} else if ((act->esoperador())&&(act->operador == '+')) { // Si es +, saca los operandos
            op1 = P.Pop();               // de la pila y los suma
            op2 = P.Pop();
            P.Push(op2 + op1); // mete el resultado intermedio en la pila
        } else if ((act->esoperador())&&(act->operador == '-')) { // Si es - resta
            op1 = P.Pop();
            op2 = P.Pop();
            P.Push(op2 - op1);  // lo mete en la pila
        } else if ((act->esoperador())&&(act->operador == '*')) {
            op1 = P.Pop();
            op2 = P.Pop();
            P.Push(op2 * op1);
        } else if ((act->esoperador())&&(act->operador == '/')) {
            op1 = P.Pop();
            op2 = P.Pop();
            if (op1 != 0) { // para no dividir entre 0
                P.Push(op2 / op1);
            } else {
                P.Push(0);
                error("División por cero");
            }
        }
		act = act->sig;
    } 


    return P.Pop();
  return 0;
} // Calculadora::Evaluar()

int main() {
	  cout<<"+++++++++++++++++++++++++++++++++++++++++++++++++++"<
* cfront 1.2 defines "c_plusplus" instead of "__cplusplus" */
#ifdef c_plusplus
#ifndef __cplusplus
#define __cplusplus
#endif
#endif

#ifdef __cplusplus

#include 
/*#include */

/* Use prototypes in function declarations. */
#define YY_USE_PROTOS

/* The "const" storage-class-modifier is valid. */
#define YY_USE_CONST
#else	/* ! __cplusplus */
#if __STDC__
#define YY_USE_PROTOS
#define YY_USE_CONST
#endif	/* __STDC__ */
#endif	/* ! __cplusplus */
#ifdef __TURBOC__
 #pragma warn -rch
 #pragma warn -use
#include 
#include 
#define YY_USE_CONST
#define YY_USE_PROTOS
#endif

#ifdef YY_USE_CONST
	 * shouldn't try reading from the input source any more.  We might
	 * still have a bunch of tokens to match, though, because of
	 * possible backing-up.
	 *
	 * When we actually see the EOF, we change the status to "new"
	 * (via yyrestart()), so that the user can continue scanning by
	 * just pointing yyin at a new input file.
	 */
#define YY_BUFFER_EOF_PENDING 2
	};

static YY_BUFFER_STATE yy_current_buffer = 0;

/* We provide macros for accessing buffer states in case in the
 * future we want to put the buffer states in a more general
 * "scanner state".
 */
#define YY_CURRENT_BUFFER yy_current_buffer


/* yy_hold_char holds the character lost when yytext is formed. */
static char yy_hold_char;

static int yy_n_chars;		/* number of characters read into yy_ch_buf */


int yyleng;

/* Points to current character in buffer. */
static char *yy_c_buf_p = (char *) 0;
static int yy_init = 1;		/* whether we need to initialize */
static int yy_start = 0;	/* start state number */

/* Flag which is used to allow yywrap()'s to do buffer switches
 * instead of setting up a fresh yyin.  A bit of a hack ...
 */
static int yy_did_buffer_switch_on_eof;

void yyrestart YY_PROTO(( FILE *input_file ));

void yy_switch_to_buffer YY_PROTO(( YY_BUFFER_STATE new_buffer ));
void yy_load_buffer_state YY_PROTO(( void ));
YY_BUFFER_STATE yy_create_buffer YY_PROTO(( FILE *file, int size ));
void yy_delete_buffer YY_PROTO(( YY_BUFFER_STATE b ));
void yy_init_buffer YY_PROTO(( YY_BUFFER_STATE b, FILE *file ));
void yy_flush_buffer YY_PROTO(( YY_BUFFER_STATE b ));
#define YY_FLUSH_BUFFER yy_flush_buffer( yy_current_buffer )

YY_BUFFER_STATE yy_scan_buffer YY_PROTO(( char *base, yy_size_t size ));
YY_BUFFER_STATE yy_scan_string YY_PROTO(( yyconst char *yy_str ));
YY_BUFFER_STATE yy_scan_bytes YY_PROTO(( yyconst char *bytes, int len ));

static void *yy_flex_alloc YY_PROTO(( yy_size_t ));
static void *yy_flex_realloc YY_PROTO(( void *, yy_size_t ));
static void yy_flex_free YY_PROTO(( void * ));

#define yy_new_buffer yy_create_buffer

#define yy_set_interactive(is_interactive) \
	{ \
	if ( ! yy_current_buffer ) \
		yy_current_buffer = yy_create_buffer( yyin, YY_BUF_SIZE ); \
	yy_current_buffer->yy_is_interactive = is_interactive; \
	}

#define yy_set_bol(at_bol) \
	{ \
	if ( ! yy_current_buffer ) \
		yy_current_buffer = yy_create_buffer( yyin, YY_BUF_SIZE ); \
	yy_current_buffer->yy_at_bol = at_bol; \
	}

#define YY_AT_BOL() (yy_current_buffer->yy_at_bol)

typedef unsigned char YY_CHAR;
FILE *yyin = (FILE *) 0, *yyout = (FILE *) 0;
typedef int yy_state_type;
extern char *yytext;
#define yytext_ptr yytext

static yy_state_type yy_get_previous_state YY_PROTO(( void ));
static yy_state_type yy_try_NUL_trans YY_PROTO(( yy_state_type current_state ));
static int yy_get_next_buffer YY_PROTO(( void ));
static void yy_fatal_error YY_PROTO(( yyconst char msg[] ));

/* Done after the current pattern has been matched and before the
 * corresponding action - sets up yytext.
 */
#define YY_DO_BEFORE_ACTION \
	yytext_ptr = yy_bp; \
	yyleng = (int) (yy_cp - yy_bp); \
	yy_hold_char = *yy_cp; \
	*yy_cp = '\0'; \
	yy_c_buf_p = yy_cp;

#define YY_NUM_RULES 11
#define YY_END_OF_BUFFER 12
static yyconst short int yy_accept[21] =
    {   0,
        0,    0,   12,   11,    1,    4,    9,   10,    5,    8,
        7,    6,    2,    3,    1,    0,    2,    3,    2,    0
    } ;

#line 1 "tarea5.l"
#define INITIAL 0
#line 2 "tarea5.l"

/*definición de constantes*/
 #define OP_SUM 321
 #define OP_MUL 322
 #define NUM 323
 #define P_ABRE 324
 #define P_CIERRA 325
 #define ERROR 666
 #define FIN 999
 
/*definiciones regulares*/
#line 384 "lex.yy.c"

/* Macros after this point can all be overridden by user definitions in
 * section 1.
 */

#ifndef YY_SKIP_YYWRAP
#ifdef __cplusplus
extern "C" int yywrap YY_PROTO(( void ));
#else
extern int yywrap YY_PROTO(( void ));
#endif
#endif

#ifndef YY_NO_UNPUT
static void yyunput YY_PROTO(( int c, char *buf_ptr ));
#endif

#ifndef yytext_ptr
static void yy_flex_strncpy YY_PROTO(( char *, yyconst char *, int ));
#endif

#ifdef YY_NEED_STRLEN
static int yy_flex_strlen YY_PROTO(( yyconst char * ));
#endif
#ifndef YY_READ_BUF_SIZE
#define YY_READ_BUF_SIZE 8192
#endif

/* Copy whatever the last rule matched to the standard output. */

#ifndef ECHO
/* This used to be an fputs(), but since the string might contain NUL's,
 * we now use fwrite().
 */
#define ECHO (void) fwrite( yytext, yyleng, 1, yyout )
#endif

/* Gets input and stuffs it into "buf".  number of characters read, or YY_NULL,
 * is returned in "result".
 */
#ifndef YY_INPUT
#define YY_INPUT(buf,result,max_size) \
	if ( yy_current_buffer->yy_is_interactive ) \
		{ \
		int c = '*', n; \
		for ( n = 0; n < max_size && \
			     (c = getc( yyin )) != EOF && c != '\n'; ++n ) \
			buf[n] = (char) c; \
		if ( c == '\n' ) \
			buf[n++] = (char) c; \
		if ( c == EOF && ferror( yyin ) ) \
			YY_FATAL_ERROR( "input in flex scanner failed" ); \
		result = n; \
		} \
	else if ( ((result = fread( buf, 1, max_size, yyin )) == 0) \
		  && ferror( yyin ) ) \
		YY_FATAL_ERROR( "input in flex scanner failed" );
#endif

/* No semi-colon after return; correct usage is to write "yyterminate();" -
 * we don't want an extra ';' after the "return" because that will cause
 * some compilers to complain about unreachable statements.
 */
#ifndef yyterminate
#define yyterminate() return YY_NULL
#endif

/* Number of entries by which start-condition stack grows. */
#ifndef YY_START_STACK_INCR
#define YY_START_STACK_INCR 25
#endif

/* Report a fatal error. */
#ifndef YY_FATAL_ERROR
#define YY_FATAL_ERROR(msg) yy_fatal_error( msg )
#endif

/* Default declaration of generated scanner - a define so the user can
 * easily add parameters.
 */
#ifndef YY_DECL
#define YY_DECL int yylex YY_PROTO(( void ))
#endif

/* Code executed at the beginning of each rule, after yytext and yyleng
 * have been set up.
 */
#ifndef YY_USER_ACTION
#define YY_USER_ACTION
#endif

/* Code executed at the end of each rule. */
#ifndef YY_BREAK
#define YY_BREAK break;
#endif

#define YY_RULE_SETUP \
	YY_USER_ACTION

YY_DECL
	{
	register yy_state_type yy_current_state;
	register char *yy_cp, *yy_bp;
	register int yy_act;

#line 26 "tarea5.l"


#line 538 "lex.yy.c"

	if ( yy_init )
		{
		yy_init = 0;

#ifdef YY_USER_INIT
		YY_USER_INIT;
#endif

		if ( ! yy_start )
			yy_start = 1;	/* first start state */

		if ( ! yyin )
			yyin = stdin;

		if ( ! yyout )
			yyout = stdout;

		if ( ! yy_current_buffer )
			yy_current_buffer =
				yy_create_buffer( yyin, YY_BUF_SIZE );

		yy_load_buffer_state();
		}

	while ( 1 )		/* loops until end-of-file is reached */
		{
		yy_cp = yy_c_buf_p;

		/* Support of yytext. */
		*yy_cp = yy_hold_char;

		/* yy_bp points to the position in yy_ch_buf of the start of
		 * the current run.
		 */
		yy_bp = yy_cp;

		yy_current_state = yy_start;
yy_match:
		do
			{
			register YY_CHAR yy_c = yy_ec[YY_SC_TO_UI(*yy_cp)];
			if ( yy_accept[yy_current_state] )
				{
				yy_last_accepting_state = yy_current_state;
				yy_last_accepting_cpos = yy_cp;
				}
			while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )
				{
				yy_current_state = (int) yy_def[yy_current_state];
				if ( yy_current_state >= 21 )
					yy_c = yy_meta[(unsigned int) yy_c];
				}
			yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c];
			++yy_cp;
			}
		while ( yy_base[yy_current_state] != 22 );

yy_find_action:
		yy_act = yy_accept[yy_current_state];
		if ( yy_act == 0 )
			{ /* have to back up */
			yy_cp = yy_last_accepting_cpos;
			yy_current_state = yy_last_accepting_state;
			yy_act = yy_accept[yy_current_state];
			}

		YY_DO_BEFORE_ACTION;


do_action:	/* This label is used only to access EOF actions. */



YY_RULE_SETUP
#line 32 "tarea5.l"
{return(OP_MUL);}
	YY_BREAK
case 6:
YY_RULE_SETUP
#line 33 "tarea5.l"
{return(OP_MUL);}
	YY_BREAK
case 7:
YY_RULE_SETUP
#line 34 "tarea5.l"
{return(OP_SUM);}
	YY_BREAK
case 8:
YY_RULE_SETUP
#line 35 "tarea5.l"
{return(OP_SUM);}
	YY_BREAK
case 9:
YY_RULE_SETUP
#line 36 "tarea5.l"
{return(P_ABRE); }
	YY_BREAK
case 10:
YY_RULE_SETUP
#line 37 "tarea5.l"
{return(P_CIERRA); }
	YY_BREAK
case 11:
YY_RULE_SETUP
#line 39 "tarea5.l"
ECHO;
	YY_BREAK
#line 676 "lex.yy.c"
case YY_STATE_EOF(INITIAL):
	yyterminate();

	case YY_END_OF_BUFFER:
		{
		/* Amount of text matched not including the EOB char. */
		int yy_amount_of_matched_text = (int) (yy_cp - yytext_ptr) - 1;

		/* Undo the effects of YY_DO_BEFORE_ACTION. */
		*yy_cp = yy_hold_char;
		YY_RESTORE_YY_MORE_OFFSET

		if ( yy_current_buffer->yy_buffer_status == YY_BUFFER_NEW )
			{
			/* We're scanning a new file or input source.  It's
			 * possible that this happened because the user
			 * just pointed yyin at a new source and called
			 * yylex().  If so, then we have to assure
			 * consistency between yy_current_buffer and our
			 * globals.  Here is the right place to do so, because
			 * this is the first action (other than possibly a
			 * back-up) that will match for the new input source.
			 */
			yy_n_chars = yy_current_buffer->yy_n_chars;
			yy_current_buffer->yy_input_file = yyin;
			yy_current_buffer->yy_buffer_status = YY_BUFFER_NORMAL;
			}

		/* Note that here we test for yy_c_buf_p "<=" to the position
		 * of the first EOB in the buffer, since yy_c_buf_p will
		 * already have been incremented past the NUL character
		 * (since all states make transitions on EOB to the
		 * end-of-buffer state).  Contrast this with the test
		 * in input().
		 */
		if ( yy_c_buf_p <= &yy_current_buffer->yy_ch_buf[yy_n_chars] )
			{ /* This was really a NUL. */
			yy_state_type yy_next_state;

			yy_c_buf_p = yytext_ptr + yy_amount_of_matched_text;

			yy_current_state = yy_get_previous_state();

			/* Okay, we're now positioned to make the NUL
			 * transition.  We couldn't have
			 * yy_get_previous_state() go ahead and do it
			 * for us because it doesn't know how to deal
			 * with the possibility of jamming (and we don't
			 * want to build jamming into it because then it
			 * will run more slowly).
			 */

			yy_next_state = yy_try_NUL_trans( yy_current_state );

			yy_bp = yytext_ptr + YY_MORE_ADJ;

			if ( yy_next_state )
				{
				/* Consume the NUL. */
				yy_cp = ++yy_c_buf_p;
				yy_current_state = yy_next_state;
				goto yy_match;
				}

			else
				{
				yy_cp = yy_c_buf_p;
				goto yy_find_action;
				}
			}

		else switch ( yy_get_next_buffer() )
			{
			case EOB_ACT_END_OF_FILE:
				{
				yy_did_buffer_switch_on_eof = 0;

				if ( yywrap() )
					{
					/* Note: because we've taken care in
					 * yy_get_next_buffer() to have set up
					 * yytext, we can now set up
					 * yy_c_buf_p so that if some total
					 * hoser (like flex itself) wants to
					 * call the scanner after we return the
					 * YY_NULL, it'll still work - another
					 * YY_NULL will get returned.
					 */
					yy_c_buf_p = yytext_ptr + YY_MORE_ADJ;

					yy_act = YY_STATE_EOF(YY_START);
					goto do_action;
					}

				else
					{
					if ( ! yy_did_buffer_switch_on_eof )
						YY_NEW_FILE;
					}
				break;
				}

			case EOB_ACT_CONTINUE_SCAN:
				yy_c_buf_p =
					yytext_ptr + yy_amount_of_matched_text;

				yy_current_state = yy_get_previous_state();

				yy_cp = yy_c_buf_p;
				yy_bp = yytext_ptr + YY_MORE_ADJ;
				goto yy_match;

			case EOB_ACT_LAST_MATCH:
				yy_c_buf_p =
				&yy_current_buffer->yy_ch_buf[yy_n_chars];

				yy_current_state = yy_get_previous_state();

				yy_cp = yy_c_buf_p;
				yy_bp = yytext_ptr + YY_MORE_ADJ;
				goto yy_find_action;
			}
		break;
		}

	default:
		YY_FATAL_ERROR(
			"fatal flex scanner internal error--no action found" );
	} /* end of action switch */
		} /* end of scanning one token */
	} /* end of yylex */


/* yy_get_next_buffer - try to read in a new buffer
 *
 * Returns a code representing an action:
 *	EOB_ACT_LAST_MATCH -
 *	EOB_ACT_CONTINUE_SCAN - continue scanning from current position
 *	EOB_ACT_END_OF_FILE - end of file
 */

static int yy_get_next_buffer()
	{
	register char *dest = yy_current_buffer->yy_ch_buf;
	register char *source = yytext_ptr;
	register int number_to_move, i;
	int ret_val;

	if ( yy_c_buf_p > &yy_current_buffer->yy_ch_buf[yy_n_chars + 1] )
		YY_FATAL_ERROR(
		"fatal flex scanner internal error--end of buffer missed" );

	if ( yy_current_buffer->yy_fill_buffer == 0 )
		{ /* Don't try to fill the buffer, so this is an EOF. */
		if ( yy_c_buf_p - yytext_ptr - YY_MORE_ADJ == 1 )
			{
			/* We matched a single character, the EOB, so
			 * treat this as a final EOF.
			 */
			return EOB_ACT_END_OF_FILE;
			}

		else
			{
			/* We matched some text prior to the EOB, first
			 * process it.
			 */
			return EOB_ACT_LAST_MATCH;
			}
		}

	/* Try to read more data. */

	/* First move last chars to start of buffer. */
	number_to_move = (int) (yy_c_buf_p - yytext_ptr) - 1;

	for ( i = 0; i < number_to_move; ++i )
		*(dest++) = *(source++);

	if ( yy_current_buffer->yy_buffer_status == YY_BUFFER_EOF_PENDING )
		/* don't do the read, it's not guaranteed to return an EOF,
		 * just force an EOF
		 */
		yy_current_buffer->yy_n_chars = yy_n_chars = 0;

	else
		{
		int num_to_read =
			yy_current_buffer->yy_buf_size - number_to_move - 1;

		while ( num_to_read <= 0 )
			{ /* Not enough room in the buffer - grow it. */
#ifdef YY_USES_REJECT
			YY_FATAL_ERROR(
"input buffer overflow, can't enlarge buffer because scanner uses REJECT" );
#else

			/* just a shorter name for the current buffer */
			YY_BUFFER_STATE b = yy_current_buffer;

			int yy_c_buf_p_offset =
				(int) (yy_c_buf_p - b->yy_ch_buf);

			if ( b->yy_is_our_buffer )
				{
				int new_size = b->yy_buf_size * 2;

				if ( new_size <= 0 )
					b->yy_buf_size += b->yy_buf_size / 8;
				else
					b->yy_buf_size *= 2;

				b->yy_ch_buf = (char *)
					/* Include room in for 2 EOB chars. */
					yy_flex_realloc( (void *) b->yy_ch_buf,
							 b->yy_buf_size + 2 );
				}
			else
				/* Can't grow it, we don't own it. */
				b->yy_ch_buf = 0;

			if ( ! b->yy_ch_buf )
				YY_FATAL_ERROR(
				"fatal error - scanner input buffer overflow" );

			yy_c_buf_p = &b->yy_ch_buf[yy_c_buf_p_offset];

			num_to_read = yy_current_buffer->yy_buf_size -
						number_to_move - 1;
#endif
			}

		if ( num_to_read > YY_READ_BUF_SIZE )
			num_to_read = YY_READ_BUF_SIZE;

		/* Read in more data. */
		YY_INPUT( (&yy_current_buffer->yy_ch_buf[number_to_move]),
			yy_n_chars, num_to_read );

		yy_current_buffer->yy_n_chars = yy_n_chars;
		}

	if ( yy_n_chars == 0 )
		{
		if ( number_to_move == YY_MORE_ADJ )
			{
			ret_val = EOB_ACT_END_OF_FILE;
			yyrestart( yyin );
			}

		else
			{
			ret_val = EOB_ACT_LAST_MATCH;
			yy_current_buffer->yy_buffer_status =
				YY_BUFFER_EOF_PENDING;
			}
		}

	else
		ret_val = EOB_ACT_CONTINUE_SCAN;

	yy_n_chars += number_to_move;
	yy_current_buffer->yy_ch_buf[yy_n_chars] = YY_END_OF_BUFFER_CHAR;
	yy_current_buffer->yy_ch_buf[yy_n_chars + 1] = YY_END_OF_BUFFER_CHAR;

	yytext_ptr = &yy_current_buffer->yy_ch_buf[0];

	return ret_val;
	}


/* yy_get_previous_state - get the state just before the EOB char was reached */

static yy_state_type yy_get_previous_state()
	{
	register yy_state_type yy_current_state;
	register char *yy_cp;

	yy_current_state = yy_start;

	for ( yy_cp = yytext_ptr + YY_MORE_ADJ; yy_cp < yy_c_buf_p; ++yy_cp )
		{
		register YY_CHAR yy_c = (*yy_cp ? yy_ec[YY_SC_TO_UI(*yy_cp)] : 1);
		if ( yy_accept[yy_current_state] )
			{
			yy_last_accepting_state = yy_current_state;
			yy_last_accepting_cpos = yy_cp;
			}
		while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )
			{
			yy_current_state = (int) yy_def[yy_current_state];
			if ( yy_current_state >= 21 )
				yy_c = yy_meta[(unsigned int) yy_c];
			}
		yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c];
		}

	return yy_current_state;
	}


/* yy_try_NUL_trans - try to make a transition on the NUL character
 *
 * synopsis
 *	next_state = yy_try_NUL_trans( current_state );
 */

#ifdef YY_USE_PROTOS
static yy_state_type yy_try_NUL_trans( yy_state_type yy_current_state )
#else
static yy_state_type yy_try_NUL_trans( yy_current_state )
yy_state_type yy_current_state;
#endif
	{
	register int yy_is_jam;
	register char *yy_cp = yy_c_buf_p;

	register YY_CHAR yy_c = 1;
	if ( yy_accept[yy_current_state] )
		{
		yy_last_accepting_state = yy_current_state;
		yy_last_accepting_cpos = yy_cp;
		}
	while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )
		{
		yy_current_state = (int) yy_def[yy_current_state];
		if ( yy_current_state >= 21 )
			yy_c = yy_meta[(unsigned int) yy_c];
		}
	yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c];
	yy_is_jam = (yy_current_state == 20);

	return yy_is_jam ? 0 : yy_current_state;
	}


#ifndef YY_NO_UNPUT
#ifdef YY_USE_PROTOS
static void yyunput( int c, register char *yy_bp )
#else
static void yyunput( c, yy_bp )
int c;
register char *yy_bp;
#endif
	{
	register char *yy_cp = yy_c_buf_p;

	/* undo effects of setting up yytext */
	*yy_cp = yy_hold_char;

	if ( yy_cp < yy_current_buffer->yy_ch_buf + 2 )
		{ /* need to shift things up to make room */
		/* +2 for EOB chars. */
		register int number_to_move = yy_n_chars + 2;
		register char *dest = &yy_current_buffer->yy_ch_buf[
					yy_current_buffer->yy_buf_size + 2];
		register char *source =
				&yy_current_buffer->yy_ch_buf[number_to_move];

		while ( source > yy_current_buffer->yy_ch_buf )
			*--dest = *--source;

		yy_cp += (int) (dest - source);
		yy_bp += (int) (dest - source);
		yy_current_buffer->yy_n_chars =
			yy_n_chars = yy_current_buffer->yy_buf_size;

		if ( yy_cp < yy_current_buffer->yy_ch_buf + 2 )
			YY_FATAL_ERROR( "flex scanner push-back overflow" );
		}

	*--yy_cp = (char) c;


	yytext_ptr = yy_bp;
	yy_hold_char = *yy_cp;
	yy_c_buf_p = yy_cp;
	}
#endif	/* ifndef YY_NO_UNPUT */


#endif
#endif

#ifdef YY_USE_PROTOS
void yy_init_buffer( YY_BUFFER_STATE b, FILE *file )
#else
void yy_init_buffer( b, file )
YY_BUFFER_STATE b;
FILE *file;
#endif


	{
	yy_flush_buffer( b );

	b->yy_input_file = file;
	b->yy_fill_buffer = 1;

#if YY_ALWAYS_INTERACTIVE
	b->yy_is_interactive = 1;
#else
#if YY_NEVER_INTERACTIVE
	b->yy_is_interactive = 0;
#else
	b->yy_is_interactive = file ? (isatty( fileno(file) ) > 0) : 0;
#endif
#endif
	}


#ifdef YY_USE_PROTOS
void yy_flush_buffer( YY_BUFFER_STATE b )
#else
void yy_flush_buffer( b )
YY_BUFFER_STATE b;
#endif

	{
	if ( ! b )
		return;

	b->yy_n_chars = 0;

	/* We always need two end-of-buffer characters.  The first causes
	 * a transition to the end-of-buffer state.  The second causes
	 * a jam in that state.
	 */
	b->yy_ch_buf[0] = YY_END_OF_BUFFER_CHAR;
	b->yy_ch_buf[1] = YY_END_OF_BUFFER_CHAR;

	b->yy_buf_pos = &b->yy_ch_buf[0];

	b->yy_at_bol = 1;
	b->yy_buffer_status = YY_BUFFER_NEW;

	if ( b == yy_current_buffer )
		yy_load_buffer_state();
	}


#ifndef YY_NO_SCAN_BUFFER
#ifdef YY_USE_PROTOS
YY_BUFFER_STATE yy_scan_buffer( char *base, yy_size_t size )
#else
YY_BUFFER_STATE yy_scan_buffer( base, size )
char *base;
yy_size_t size;
#endif
	{
	YY_BUFFER_STATE b;

	if ( size < 2 ||
	     base[size-2] != YY_END_OF_BUFFER_CHAR ||
	     base[size-1] != YY_END_OF_BUFFER_CHAR )
		/* They forgot to leave room for the EOB's. */
		return 0;

	b = (YY_BUFFER_STATE) yy_flex_alloc( sizeof( struct yy_buffer_state ) );
	if ( ! b )
		YY_FATAL_ERROR( "out of dynamic memory in yy_scan_buffer()" );

	b->yy_buf_size = size - 2;	/* "- 2" to take care of EOB's */
	b->yy_buf_pos = b->yy_ch_buf = base;
	b->yy_is_our_buffer = 0;
	b->yy_input_file = 0;
	b->yy_n_chars = b->yy_buf_size;
	b->yy_is_interactive = 0;
	b->yy_at_bol = 1;
	b->yy_fill_buffer = 0;
	b->yy_buffer_status = YY_BUFFER_NEW;

	yy_switch_to_buffer( b );

	return b;
	}
#endif


#ifndef YY_NO_SCAN_STRING
#ifdef YY_USE_PROTOS
YY_BUFFER_STATE yy_scan_string( yyconst char *yy_str )
#else
YY_BUFFER_STATE yy_scan_string( yy_str )
yyconst char *yy_str;
#endif
	{
	int len;
	for ( len = 0; yy_str[len]; ++len )
		;

	return yy_scan_bytes( yy_str, len );
	}
#endif


#ifndef YY_NO_SCAN_BYTES
#ifdef YY_USE_PROTOS
YY_BUFFER_STATE yy_scan_bytes( yyconst char *bytes, int len )
#else
YY_BUFFER_STATE yy_scan_bytes( bytes, len )
yyconst char *bytes;
int len;
#endif
	{
	YY_BUFFER_STATE b;
	char *buf;
	yy_size_t n;
	int i;

	/* Get memory for full buffer, including space for trailing EOB's. */
	n = len + 2;
	buf = (char *) yy_flex_alloc( n );
	if ( ! buf )
		YY_FATAL_ERROR( "out of dynamic memory in yy_scan_bytes()" );

	for ( i = 0; i < len; ++i )
		buf[i] = bytes[i];

	buf[len] = buf[len+1] = YY_END_OF_BUFFER_CHAR;

	b = yy_scan_buffer( buf, n );
	if ( ! b )
		YY_FATAL_ERROR( "bad buffer in yy_scan_bytes()" );

	/* It's okay to grow etc. this buffer, and we should throw it
	 * away when we're done.
	 */
	b->yy_is_our_buffer = 1;

	return b;
	}
#endif


#ifndef YY_NO_PUSH_STATE
#ifdef YY_USE_PROTOS
static void yy_push_state( int new_state )
#else
static void yy_push_state( new_state )
int new_state;
#endif
	{
	if ( yy_start_stack_ptr >= yy_start_stack_depth )
		{
		yy_size_t new_size;

		yy_start_stack_depth += YY_START_STACK_INCR;
		new_size = yy_start_stack_depth * sizeof( int );

		if ( ! yy_start_stack )
			yy_start_stack = (int *) yy_flex_alloc( new_size );

		else
			yy_start_stack = (int *) yy_flex_realloc(
					(void *) yy_start_stack, new_size );

		if ( ! yy_start_stack )
			YY_FATAL_ERROR(
			"out of memory expanding start-condition stack" );
		}

	yy_start_stack[yy_start_stack_ptr++] = YY_START;

	BEGIN(new_state);
	}
#endif


#ifndef YY_NO_POP_STATE
static void yy_pop_state()
	{
	if ( --yy_start_stack_ptr < 0 )
		YY_FATAL_ERROR( "start-condition stack underflow" );

	BEGIN(yy_start_stack[yy_start_stack_ptr]);
	}
#endif


#ifndef YY_NO_TOP_STATE
static int yy_top_state()
	{
	return yy_start_stack[yy_start_stack_ptr - 1];
	}
#endif

#ifndef YY_EXIT_FAILURE
#define YY_EXIT_FAILURE 2
#endif

#ifdef YY_USE_PROTOS
static void yy_fatal_error( yyconst char msg[] )
#else
static void yy_fatal_error( msg )
char msg[];
#endif
	{
	(void) fprintf( stderr, "%s\n", msg );
	exit( YY_EXIT_FAILURE );
	}



/* Redefine yyless() so it works in section 3 code. */

#undef yyless
#define yyless(n) \
	do \
		{ \
		/* Undo effects of setting up yytext. */ \
		yytext[yyleng] = yy_hold_char; \
		yy_c_buf_p = yytext + n; \
		yy_hold_char = *yy_c_buf_p; \
		*yy_c_buf_p = '\0'; \
		yyleng = n; \
		} \
	while ( 0 )


/* Internal utility routines. */

#ifndef yytext_ptr
#ifdef YY_USE_PROTOS
static void yy_flex_strncpy( char *s1, yyconst char *s2, int n )
#else
static void yy_flex_strncpy( s1, s2, n )
char *s1;
yyconst char *s2;
int n;
#endif
	{
	register int i;
	for ( i = 0; i < n; ++i )
		s1[i] = s2[i];
	}
#endif

#ifdef YY_NEED_STRLEN
#ifdef YY_USE_PROTOS
static int yy_flex_strlen( yyconst char *s )
#else
static int yy_flex_strlen( s )
yyconst char *s;
#endif
	{
	register int n;
	for ( n = 0; s[n]; ++n )
		;

	return n;
	}
#endif


#ifdef YY_USE_PROTOS
static void *yy_flex_alloc( yy_size_t size )
#else
static void *yy_flex_alloc( size )
yy_size_t size;
#endif
	{
	return (void *) malloc( size );
	}

#ifdef YY_USE_PROTOS
static void *yy_flex_realloc( void *ptr, yy_size_t size )
#else
static void *yy_flex_realloc( ptr, size )
void *ptr;
yy_size_t size;
#endif
	{
	/* The cast to (char *) in the following accommodates both
	 * implementations that use char* generic pointers, and those
	 * that use void* generic pointers.  It works with the latter
	 * because both ANSI C and C++ allow castless assignment from
	 * any pointer type to void*, and deal with argument conversions
	 * as though doing an assignment.
	 */
	return (void *) realloc( (char *) ptr, size );
	}

#ifdef YY_USE_PROTOS
static void yy_flex_free( void *ptr )
#else
static void yy_flex_free( ptr )
void *ptr;
#endif
	{
	free( ptr );
	}

#if YY_MAIN
int main()
	{
	yylex();
	return 0;
	}
#endif
#line 39 "tarea5.l"


/*

void main () {
    yylex();   
    
} */	

    Source: geocities.com/roberto_hern83/t5/t5solA11727_archivos

               ( geocities.com/roberto_hern83/t5)                   ( geocities.com/roberto_hern83)