
Chapter 1

Rotational Motion

1.1 Rotational Kinematics

Now we’re going to start going in circles. Everything we did in the first
chapters we’re going to convert over to the analogous rotational quantities.
All angles must be measured in radians. (check the setting on your calcu-
lator!!!) Basically, our conversion equation relating the straight-line stuff
to the circle-stuff is

s = rθ (1.1)

Also, remember that
2π radians = 180o

Now contemplate the following table:

Table 3: Translation versus Rotation
Translation variable units Rotation variable units
position x meters angle θ radians
velocity v = dx/dt m/s angular velocity ω = dθ/dt rad/s
acceleration a = d2x/dt2 m/s2 angular acceleration α = d2θ/dt2 rad/s2

Anything you can do with the x you can do with θ . The derived equations

also tend to be very similar. For example, take the ballistics equations in
the following table.

Table 4: Ballistics, Translation vs. Rotation
Translation Rotation
v = at + v0 ω = αt + ω0

x = 1
2at2 + v0t + x0 θ = 1

2αt2 + ω0t + θ0

1
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1.2 Examples

1.2.1 Going in Circles

Example 1: Suppose a disk, initially rotating at 10 rad/s, is accelerating
at constant angular acceleration of 4rad/s2. (a) How long does it take to
turn through six hundred radians? (b)What’s the angular velocity at that
time?

Solution: (a) Start with constant angular acceleration α. We can integrate
this baby.

ω =
∫

αdt ⇒ ω = αt + ω0

⇒ θ =
1
2
αt2 + ω0t + θ0

It’s just like one dimensional ballistics! Now, plug in the givens and set θ
equal to 600 radians and solve.

600 =
1
2
· 4t2 + 10t ⇒ t2 + 5t− 300 = 0 = (t + 20)(t− 15)

⇒ t = 15 s

(b) Just plug and chug to do this part.

ω = αt + ω0 = 4(15) + 10 = 70 rad/s

Here are some obvious and useful relations that can be found be taking
derivatives of s = rθ, with r a fixed distance from the axis of rotation :

v =
ds

dt
= r

dθ

dt
= rω

atan =
dv

dt
= r

dω

dt
= rα

These equations apply to any rotating object, not just circles or disks.
Remember that arad = v2/r = ω2r . Obviously, for constant r only.

1.3 Moments of Inertia and Rotational Ki-
netic Energy

The last topic in this chapter concerns rotational kinetic energy, which is
rather difficult only because it’s challenging to calculate moments of inertia.
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Moments of inertia take the place of mass. In terms of the above equations,
we have

Ktot =
∑ 1

2
miv

2
i =

∑ 1
2
mir

2
i ω2 =

1
2
Iω2

Looking at the above equation, it’s pretty obvious that I, the moment of
inertia, is given by

I =
∑

i

mir
2
i (1.2)

In the case of continuous solids, this becomes an integral:

I =
∫

r2dm (1.3)

The last equation is kind of obscure, so we’ll rewrite it in various dimensions.
For one dimensional objects:

I = intr2λds

where λ is the mass per unit length. For two dimensional objects, an area
(double) integral is needed:

I =
∫

r2σdA

while for three-dimensional objects, a volume (triple) integral in necessary:

I =
∫

r2ρdV

Example 1. A bicycle with wheels 40 cm in radius is moving at con-
stant speed of 20 m/s. (A) What is the angular velocity of the wheels?
(B) Through how large an angle ( in radians) does the wheel turn in five
seconds?

Example 2. A car starts from rest and accelerates at 4 m/s2. If the
wheels are 40 cm in radius, (A) what is the angular acceleration of one of
the wheels? (B) What is the angular velocity of the car when the speed of
the car is 20 m/s? (C) Through what angle has the wheel turned in this
time?

Example 3. A horizontal grindstone, turning counterclockwise at 40
rad/s, slows to rest in 20 seconds. (A) Find the angular acceleration, as-
suming it’s constant. (B) Find the angle through which it turns. (C) Find
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the angular velocity after it has passed through 50 radians.

Example 4. A jet turbine cranks up to 50 rev/sec in 20 seconds, with
constant angular acceleration. Find the tangential and normal components
of acceleration at the tip of the fan blades, which are 0.8 meters long.

Example 5. The Earth travels around the sun once a year at a distance
of 150 billion meters. (A) Find the angular velocity of the Earth. (B) Find
the tangential velocity. (C) What must the acceleration of gravity be at
that distance from the sun?

Solution: (A) The Earth travels 2π radians in one year. Angular velocity
is in terms of radians per unit time, so in units of radians per year, we have
simply

ω =
2π

1 year
= 2π

rad

year

That was too easy! Usually, though, we use MKS units, of radians per
second:

2π
rad

year
· 1 year

365 days
· 1 day

24 hrs

1 hour

3600 sec
= 1.99× 10−7 rad/sec

Example 2. A space station consists of a hub 20 meters in diame-
ter with spokes that radiate outwards to 40 meters at the rim. (A) Find
the angular velocity of the station that will result in an apparent gravity
(normal acceleration) of one gee at the outer rim. (B) What is the corre-
sponding normal acceleration in the hub? (C) How many revolutions per
minute does the station make? (D) What is the tangential speed at the
hub, and (E) at the rim?

Example 1. A flywheel turning clockwise at 40 rad/s one meter in radius
comes to a stop after 8 seconds of uniform deceleration. (A) What is the
angular acceleration? (B) What is the normal acceleration at any time?
(C) What is the angular velocity when the wheel has gone through 100
radians? (D) What is the total angle the flywheel travels through during
that time?

1.3.1 Moments of Inertia

Example 2: Find the moment of inertia of a uniform rod of length L with
linear density λ0 ,where the axis of rotation is perpendicular to the rod and
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a distance h from one end.

Solution:

I =
∫

r2dm =
∫ L−h

−h

x2λ0dx

Notice the simple substitution, of r = x in this case, and dm = λ0dx

=
1
3
λ0x

3

∣∣∣∣
L−h

−h

=
1
3
λ0

(
(L− h)3 − (−h)3

)
=

1
3
λ0

(
L3 − 3L2h + 3Lh2

)

Example 3: Thin rod with non-constant density A thin rod of length
L with ρ = Ax2 + ρ0 ,x the distance from the axis which is perpendicular
to the rod and distance h from one end.

Solution: Here, dm = (Ax2 + ρ0dx . Plug and chug, arriving at:

I =
∫ L−h

−h

Ax2+ρ0dx =
1
3
Ax3+ρ0x|L−h

−h =
1
3
A(L−h)3+ρ0(L−h)−1

3
A(−h)3+ρ0(−h) = etc.

Example 4: Annulus of MaterialAn annulus of material with constant
density σ , axis of rotation through the center.

Solution:

I =
∫ ∫

r2dm =
∫ 2π

0

∫ r2

r1

r2σrdrdθ = 2πσr4

∣∣∣∣
r2

r1

=
1
2
πσ

(
r4
2 − r4

1

)

It is customary to rewrite these expressions in terms of the total mass of
the object. In this case, simply integrate the surface mass density over the
area, and algebraically fit it into the equation for I:

M =
∫ 2π

0

∫ r2

r1

σrdrdθ = 2πσ
r2

2

∣∣∣∣
r2

r1

= πσ
(
r2

2 − r1
2
)

⇒ I =
1
2
M

(
r2
1 + r2

2

)

Note that in the previous two equations, the θ integration resulted merely
in a multiple of 2π .

Example 5: Find the moment of inertia of a hollow cylinder of material,
of height h and radius r, with uniform surface density, axis through the
center of the hollow.

Solution: This one is easy. All the material is distance r from the axis, so

I = Area× σ × r2 = (2πrh)σr2 = 2πr3hσ = Mr2
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Example 6: Space Station Use the previous two examples to find the
moment of inertia of a space station taking the form of two concentric cylin-
ders of radii a and b, with top and bottom coverings ( which are annuli).

If you want a real challenge, compute the moment of inertia of a torus
of uniform surface density. For the answer, see the appendix. Example 7:
Compute the moment of inertia of a square of side L and of constant surface
density, where the axis is perpendicular to the square and goes through one
corner.

Solution: Don’t break a sweat on this one.

I =
∫ A

0

∫ B

0
(x2 + y2)σdydx =

∫ A

0
x2y + 1

3y3|B0 dx =

=
∫ A

0

Bx2 +
1
3
B3dx = Bx

3
3 +

1
3
B3x|A0 =

= 1
3

σAB(A2 + B2) =
1
3
M(A2 + B2)

Finally, there’s the parallel axis theorem, which states that if you know the
moment of inertia around one axis, you can obtain the moment of inertia
around a parallel axis by computing

I = Md2 + Io

Here, d is the distance from the old axis to the new one, and Io is the old
moment of inertia. Gravitational potential energy of a rigid body is just
the potential energy of the center of mass. Here’s a final example.

Example 8: Suppose a cylinder of radius r on a ramp is attached to a
pulley of radius r and moment of inertia I as shown. Use conservation of
energy to find the velocity of the cylinder at the bottom of the ramp.

Solution:
∆KErot + ∆KEtrans + ∆Pgrav = 0

1
2
Ip(ωpf − ωpi) +

1
2
Ic(ωcf − ωci) +

1
2
m(v2

f − v2
i ) + mg(hf − hi) = 0

Note that rω = v for both the pulley and the cylinder. Substituting these
expressions, and the info on the problem, obtain

1
2
mpv

2 +
1
4
mcv

2 +
1
2
mcv

2 −mgh = 0

v = [
2mcgh

mp + 3
2mc

]
1
2
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1.4 Temporary Storage
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Chapter 2

Rotational Dynamics

2.1 Torque

Torque, ~τ , is a measure of how much angular acceleration can be obtained
from a force. The definition is:

~τ = ~r × ~F (2.1)

The vector ~r points from some reference point (not necessarily the origin)
to the point of application of the force, ~F . The cross product delivers the
part of the second vector that is perpendicular to the first vector, times the
first vector. The magnitude of torque is

τ = |~τ | = |~r||~F | sin θ (2.2)

where θ is the angle between ~r and ~F . ~r is often called the moment arm.
Levers are often involved in these problems, however even when no lever is
evident in a problem, there is still a mathematical moment arm. Torques
can be computed around any point whatsoever, even a point floating way
off in space, away from the physical object of interest. In a given problem,
however, once the reference point is chosen, it must remain so throughout
the problem. The units of torque: Newton-meter. Mathematically, τ is

modeled by the sine function, with the maximum effect occurring when θ =
90o,since sin 90o = 1. On the other hand, if we push inwards towards the
center of the merry-go-round, or pull outwards, we won’t get any effective
rotational acceleration. Again, the sine function models this behavior, since
sin 0o = sin 180o = 0. That matches common sense. Pushing tangentially

9
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to the rim of the merry-go-round will produce the optimal effect (since
the sin 90o = 1, the biggest that sine can be). A final factoid: longer
levers, which corresponds to longer r, result in a stronger torque, and more
effective angular acceleration. This is the classic advantage of obtaining
leverage, useful in wrestling, and in moving the world (Archimedes’ famous
statement: ’If I had a lever long enough, and a fulcrum in which to place
it, I could move the world.’)

2.2 Newton’s Second Law, with Torques

Newton’s second law can be converted to the angular form:

I~α =
n∑

i=1

~τi (2.3)

where is the angular acceleration, and I is called the moment of inertia.
For a point mass moving in a circle around a point, the moment of inertia
is given by

I = MR2 (2.4)

where M is the mass and R is the distance to the axis of rotation. For
hoops, disks, and so forth, there are various moments of inertia, which
must be derived with calculus. Problems are solved in these rotational
contexts much as they are in the linear case. For static problems, where
nothing is moving, the sum of the torques and also, separately, the sum of
the forces are both zero. For dynamic problems, the torque law must be
used.

2.3 Rotational Work and Kinetic Energy

Energy can be stored in a rotating object just as it can be stored in moving
objects. This is the principle of the flywheel, which in some experimental
vehicles stores energy in the spinning wheel while the car is at a stop light.
And to create this rotational energy, it is necessary to do work. This is
defined by

W =
∫ θ2

θ1

τdθ (2.5)

So applying a torque through a given angle will result in work being done.
This rotary work will create rotational kinetic energy, which is defined as

Krot =
1
2
Iω2 (2.6)
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where ω is the angular velocity. The work-energy equation can now be
changed to include the effects of rotational kinetic energy:

Wother = ∆K + ∆Krot + ∆U (2.7)

As before, the work on the left-hand side doesn’t include work done by
conservative forces, which are all contained, effectively, in the potential
energies.

2.4 Angular Momentum

An angular momentum, ~L, can also be defined for point particles:

~L = ~r × ~p (2.8)

where ~p is the usual linear momentum. All objects, therefore, have angular
momentum with respect to some reference point. Angular momentum is
absolutely conserved, just like linear momentum, for isolated systems.

For extended bodies, the angular momentum must be found by integra-
tion. This works out to be

~L = Iωn̂ (2.9)

where n̂ is a unit vector pointing in the direction of ~L.

2.5 Examples

2.5.1 Torque

Example 1. Wrench. A half-meter long wrench is on a nut, the wrench
at an angle of 30 degrees below the horizontal. An ape with mass 50 kg
grabs the end and dangles. How much torque is applied to the nut? Use
the center of the nut as the reference point.

Solution: Apply the torque equation. The force is just the weight of the
monkey, mg, while the angle is θ = 60o. The angle may appear bigger
than that–120o–but it’s the angle between the vector directions, not the
one made by the figure of the moment arm and the force direction. The
force vector points straight down, while the moment arm vector points 30o

beneath the horizontal, a gap of 60o (or of 300o). Of course, the symmetry
of the sine function is such that the 120o angle also always works, so not to
worry.

~τ = ~r × ~F
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τ = |~τ | = rF sin θ = 0.5(50 · 9.8) sin 60o = 122.5 N −m

Example 2. Galley Slave. A slave in a galley applies a constant force
of 150 Newtons to an oar. The oar rotates through a metal loop that is
two meters away, the oar going through the loop and extending on into the
water, two more meters in length. (A) When the oar is such that the angle
between the oar and the force is 90 degrees, how much torque is exerted?
Compute it around the metal loop, and find the force exerted on the water
and on the galley. (B) Redo the problem if the oar is only three meters
long, with one meter on the inside of the loop

Solution: Since the forces are constant, their sum must be zero, just like
the sum of the torques. We have from Newton’s second law

∑
Fi = 0 = Fsl + Floop + Fwater

The forces may be positive or negative, of course. We’ll take the slave’s
force on the oar to be positive, which means the force of the water is also
in the positive direction, while the force of the metal ring on the oar is
negative. If the torques are computed around the metal loop, then the
Floop torque contribution is zero, and so

∑
τi = 0 = FslLsl − FwaterLwater

which means that

Fwater = Fsl
Lsl

Lwater
= 150

2
2

= 150 N

From the force equation we then have If the torques are computed around
the metal loop, then the

Floop = − (Fsl + Fwater) = −300 N

The reaction force to this loop force is what drives the galley forward. No-
tice the advantage of the leverage action: the slave has effectively doubled
his applied force. In part (B) the analysis is identical, except now the part
of the oar inside the boat is only 1 meter long, while outside it’s still two
meters long. Intuitively, we expect that not to be quite as effective, and it
isn’t:

Fwater = Fsl
Lsl

Lwater
= 150

1
2

= 75 N

Floop = − (Fsl + Fwater) = −(75 + 150) = −225 N

Example 3. Strut 1. A strut of mass 10 kg extends straight out from a
wall, attached by a hinge. A wire extends from the end of the strut, and
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is attached to the wall above the hinge, so that there is a 45 deg angle
between the strut and the wire. A 20 kg mass hangs from the end. (A)
Find the tension in the wire. (B) Find the x and y components of the force
in the hinge.

Solution: SYMBOLS ” L= length, T=cable tension, m=10 kg weight,
M=20 kg weight, g=gravitational acceleration.
Use

∑
τ = 0 along with

∑
Fi = 0. It’s advantageous to compute the

torques around the hinge, since that knocks the hinge force out of the torque
equation (since its moment arm would be zero). There are four torques.
The hinge force gives a torque of zero, since it acts at the point we’re
calculating torques around. The mass of the strut acts effectively from the
center of the strut, so will contribute −mg(L/2) sin 90o. If the strut weren’t
uniform, we’d have to integrate, but by symmetry, it’s balanced, weight-
wise, around the center of the strut. This contribution is negative, since
it’s trying to turn the strut clockwise around the torque-calculation-point,
which is the negative angular direction. Similarly, the 20 kg mass on the
end contributes −mgL sin 90o. Finally, the tension contributes a positive
torque, since it’s trying to rotate the strut counterclockwise, the positive
angular direction.

∑

i

τi = −mg
L

2
sin 90o −MgL sin 90o + TL sin 30o = 0

Solve for the tension. Notice that the factor of L cancels out, a common
occurrence in these strut problems.

−10 · 9.8 · 1
2
· 1− 20 · 9.8 · 1 + T · 1

2
= 0

⇒ −49− 196 +
1
2
T = 0 ⇒ T = 490 N

The forces are now easy to calculate.
∑

Fi = (Fx, Fy) + (0,−mg) + (0,−Mg) + T (cos 30o, sin 30o)

Rip out the components and solve for Fx and Fy:

Fx = T cos 30o = 490 ·
√

3
2

= 200
√

3 N

Fy = mg+Mg−T sin 30o = 10·9.8+20·9.8−490· 1
2

= 98+196−245 = 49 N

Example 4. Another Strut. A horizontal strut of length 4 meters is
attached to one wall by a hinge is supported by a wire attached to its end
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and running at a thirty degree angle above the horizontal to another wall.
The strut has a mass of 10 kilograms. Find (A) the tension in the wire (B)
the force in the hinge.

Solution: Compute torques around the hinge. This will take the hinge
force out of the torque equation, which is

∑
τi = 0 = −mg

L

2
+ TL sin 30o

Solve for the tension, T :

−10 · 9.8 · 2 +
1
2
· 4T = 0 → T = 98 N

Now for the force, use Newton’s second law for forces.
∑

Fi = 0 → (Fx, Fy) + (0,−mg) + T (cos 30o, sin 30o)

Rip out the x- and y-components and solve the the components of the hinge
force:

Fx = −T cos 30o = −98 ·
√

3
2

= 84.87 N

Fy = mg − T sin 30o = 10 · 9.8− 1
2
98 = 49 N

Nice and easy.

Example 5. Kid on a See-Saw. A 40 kg kid sits on one end of a see-saw,
while a 80 kg kid sits on the other side. If the see-saw is 3 meters across
and rotates around the middle, where should the 80 kg sit so as to perfectly
balance?

Solution: Compute the torques around the middle. Then the torque due
to the support is zero, the torque due to the see-saw board is also zero
(being balanced), so it’s just a matter of balancing the torque due to the
kids. Call them kid 1 (40 kg) and kid 2 (80 kg). Since they’re on opposite
sides, one gives positive torque and the other negative torque. We want

F1L1 + FL2 = 0

M1gL1 −M2gL2 = 0 → 40 · 1.5− 80L2 = 0

L2 =
1
2
· 1.5 = 0.75 meters

A sensible, intuitive answer.
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Example 6. Disk. A disk with moment of inertia 50 kg−m2 slows to
rest in five seconds from an angular velocity of 20 rad/sec, due to the action
of a shoe pressing against the side. What torque was exerted, assuming it
to be constant?

Solution: The retarding force, here, is the force of kinetic friction, Fk.
The torque is FkR sin θ, and we assume here that θ = 90o, since the shoe
is pushed straight in, and simple rubbing, intuitively, creates a tangential
acceleration. We have

Iα =
∑

τi = τ

There are two unknowns in this equation, so we need to compute one of
them, α, first. We have the info necessary:

α =
∆ω

∆t
=

0− 20
5− 0

= −4 rad/s2

Plug in and win:

τ = Iα = 50 · (−4) = −200 N −m

Example 7. Ladders. A 50 kg kid climbs a 4 meter ladder that leans to
the right against a wall, making a right triangle with two 45 degree angles.
Consider the wall frictionless, and the mass of the ladder to be 20 kg. If
the coefficient of static friction on the ground is 0.3, when does the ladder
begin to slip?

Solution: This is a tough problem, but is easier than it looks. Static is
easy: sum of the torques is zero, and the sum of the forces is zero. These two
equations do the trick. Let +x be to the right, +y up. Let M=mass of the
kid, m= mass of the ladder. ~Fkid= Force of gravity of the kid. ~Flad=gravity
force of the ladder. ~Nf=normal force of the floor. vecNw=normal force of
the wall. ~Fs=static friction force of the floor. Now let’s write down each of
these forces:

~Fkid = (0,−Mg)

~Flad = (0,−mg)

~Nf = (0, Nf )

~Nw = (−Nw, 0)

~Fk = (µsNf , 0)
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The friction force is positive because it’s preventing the bottom of the ladder
from sliding to the left. Now, we have Newton’s second law:

∑
Fi = 0

⇒ ~Fkid + ~Flad + ~Nf + ~Nw + ~Fk = 0

(0,−Mg) + (0,−mg) + (0, Nf ) + (−Nw, 0) + (µsNf , 0) = ~0

Rip out the x- and y-components, getting:

−Nw + µsNf = 0

−Mg −mg + Nf = 0

We’re almost done–well, 2/3 of the way there, anyway. Notice that we’ve
got two of our unknowns already:

Nf = Mg + mg = 50 · 9.8 + 20 · 9.8 = 686 N

Nw = µsNf = 0.3 · 686 = 205.8 N

The last thing we have to figure out is the position of the kid when it starts
to slip. Let the origin of coordinates be at the left hand bottom of the
latter. Let L be the distance along the ladder of the kid from the origin.
Compute the torques around the origin. This gives:

∑
τi = 0

~Fs and ~Nf don’t contribute, because they have zero moment arm. The
mass of the ladder, mass of kid, and normal force off the wall all contribute
torques:

τkid + τlad + τwall = 0

−MgL sin 135o −mg2 sin 135o + Nw4 sin 135o = 0

L =
4Nw − 2mg

Mg
=

431.2
490

= 0.88 meters

Notice that in each case, the angle between the moment arm, pointing along
the slope of the ladder, and the direction of the applied force, is 135o.

Example 8. Ladders Again. Repeat the ladder example, where rather
than frictionless, the wall has the same coefficient of static friction as the
floor.
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Solution: This is not a problem. There is an additional force in the y-
direction, and an additional torque. The force of friction in the y-direction
is

~Fsy = (0, µsNw)

and the additional torque, τf ,computed around the bottom of the ladder,
is

τf = µsNw sin 45o

:No need to redo all the work–tack these terms onto the ends of the right
equations, getting:

−Nw + µsNf = 0

−Mg −mg + Nf + µsNw = 0

−MgL sin 135o −mg2 sin 135o + Nw4 sin 135o + µsNw4 sin 45o = 0

Now to compute the point at which the ladder starts to slip. The only new
hassle is that the x- and y-component equations from Newton’s second law
must now be solved simultaneously. Solve the x-component equation for
Nw and plug into the other:

−Mg −mg + Nf + µ2
sNf = 0

Nf =
Mg + mg

1 + µ2
s

=
50 · 9.8 + 20 · 9.8

1 + 0.32
=

686
1.09

= 629.36 N

So the wall friction is helping out, though not much. We also get, by
plugging back in,

Nw = µsNf = 0.3 · 629.36 = 188.81 N

Now solve the torque equation for L, noticing that sin 45o = sin 135o:

L =
4Nw + 4µsNw − 2mg

Mg
=

4 · 188.8 + 4 · 0.3 · 629.4− 2 · 20 · 9.8
50 · 9.8

=

=
1510.6− 392

490
=

1118.6
490

= 2.28 meters

So there is, in fact, considerable advantage to having a wall with friction,
but the ladder still slips and the kid still falls down.

Example 9. Merry-Go-RoundWhat constant force must be exerted on
a merry-go-round turning twice every second if it is to be stopped in 20
seconds. Assume the force makes a sixty degree angle with respect to an
outward radial line, against the direction of motion, and that the merry-go-
round has mass of 500 kg and radius two meters, with moment of inertia
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I = 0.5Mr2.

Solution: First, find the necessary angular acceleration. Second, use the
torque form of Newton’s second law. From the statement of the problem,
the frequency is f = 2 Hz, so ω = 2πf = 4π. Assume the merry-go-round
is moving in the positive angular direction. From rotational ballistics:

ω = αt + ω

→ 0 = α · 20 + 4π → α = −π

5

Iα = τ = FL sin θ

The angle, from the description, is 60 degrees. Solve for F and substitute
all the numbers.

F =
Iα

L sin θ
=

0.5 · 500 · 22 · (−π/5)
2 · sin 60o

= −367.8 Newtons

Example 10. See-Saw Reprise A see-saw massing 100 kilograms and
having length 6 meters is pivoted two meters from the left end. (A) Where
must a boy massing 60 kg stand so that the see-saw will balance horizon-
tally? (B) What is the force exerted at the pivot point?

Solution: Follow the same technique as in the previous see-saw problem.
Obviously, the kid must stand on the short end of the see-saw. Compute
torques around the pivot point (though anywhere else would be okay, too).
Then

FkidL− FboardLB = 0

You might think there are two board torques–one from,effectively, the center
of the short side and another from the center of the long side–but it also
works to consider the board as a whole, to use the center of mass of the
whole board, which of course will be right in the middle of the board. The
board term is negative because the center of the board is to the right of the
pivot point.So LB = 1 m, and

mkidgL−mBgLB = 0 → L =
mB

mkid
LB =

100
60

· 1 = 1.667 m

For part (B), we have to look at the forces.
∑

Fi = 0 → −mkidg + FP −mBg = 0

FP = mkidg + mBg = 60 · 9.8 + 100 · 9.8 = 1, 568 N
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2.5.2 Rotational Dynamics

Example 11. Ball and Block: Grudge Match. A ball and a block, of
identical mass M, are to race down a ramp of height h. If at the bottom
they’re going at the same speed, what must the coefficient of friction be,
in terms of the parameters of the problem? Note: The ball has moment of
inertia (2/5)MR2.

Solution: We need to write down the work-energy equation twice. For the
ball,

W = ∆K + ∆Krot + ∆Ugrav = (Kf −Ki) + (Kfrot −Kirot) + (Uf − Ui)

W = 0 =
(

1
2
Mv2 − 0

)
+

(
1
2
Iω2 − 0

)
+ (0−Mgh)

Use

I =
2
5
MR2

together with
v = Rω

to get
1
2
Iω2 =

1
2

2
5
MR2ω2 =

1
5
Mv2

Feed this into the work-energy equation. Get

0 =
1
2
Mv2 +

1
5
Mv2 −Mgh

Solve for v:
7
10

Mv2 = Mgh → v =

√
10
7

gh

Now let’s do the same thing for the sliding block. The work-energy equation
reads

Wother = ∆K + ∆Ugrav

The work done by the friction force is

Wfric = ~F ·∆~s = −µkN∆s = −µkMg cos θh csc θ

Where did all those terms come from? Well , see Chapter 5. But briefly,
because of the slant, N = mg cos θ, where N is the normal force, of course.
The distance along the slant, ∆s, can be found in terms of the height h
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and the angle θ with simple trigonometry: h/∆s = sin θ. Now stick this in
the work-energy equation.

−µk cot θMgh =
1
2
Mv2 −Mgh

Solve for v:

1
2
Mv2 = Mgh− µk cot θMgh = (1− µk cot θ)Mgh

v =
√

(1− µk cot θ) 2gh

Comparing the speed of the block and that of the sphere, we see that
they will be equal if

(1− µk cot θ) 2 =
10
7

⇒ µk =
3
7

tan θ

The block reaches the highest speed if µk is less than the expression on the
right. Notice this isn’t necessarily the same as winning the race, since that
depends on how the velocity varies with position, but here the accelerations
are uniform, so the block will win for sufficiently low kinetic friction.

2.5.3 Angular Momentum

Example 12. Collapsing Star. Suppose a star with radius one million
kilometers, spinning on its axis once a month, suddenly collapses to a radius
of 20 kilometers. How fast is it spinning, now?

Solution: This is typical in the formation of a neutron star, though usually
a large fraction of the mass is blown off at the same time, taking with it
some of the angular momentum. By conservation of angular momentum,
we have:

Iiωi = Ifωf → 2
5
Mr2

i ωi =
2
5
Mr2

f

Obviously, the 2/5 cancels, and the masses, in this case.The initial angular
velocity was given: 2pi rad/month. If we divide both sides of the above
equation by 2π, we’ll convert angular velocity to frequency, the number of
times it turns per month, which is 1 time. So

ωf

2pi
= ff = fi

(
ri

rf

)2

= 1 ·
(

106

20

)2

= 2.5× 109 revolutions/month
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Since there are about 2.6 × 106 seconds in a month, this means that star,
which would fit comfortably inside, say, greater Miami Beach, rotates on
its axis about a thousand times per second. Such miillisecond pulsars have
indeed been observed out there in deep space.

Example.13. The Skater. A skater starts a spin with arms outstretched,
knees bent outward, throwing herself around with angular velocity of 2π
radians per second. How much will her angular velocity increase if she
straightens, pulling in her arms, stretching them up overhead, and making
her body as slender as possible? Assume her total mass is 50 kg, that her
arms and legs, outstretched as much as possible, are on average 40 cm from
the center of her body and mass a total of 10 kg, and that they are brought
in to an average position of 10 cm from the center of her body. Assume
also that her trunk is a cylinder. Model her extended arms and legs as a
pair of weights on a massless strut, one on each side.

Solution: This problem is harder to write down than to do. We need
expressions for the moment of inertia before and after. These are, of course,
rather approximate. Let m be the mass of one of the extended weights (i.e.
5 kg) and let M be the mass of the rest of her body (40 kg) . R is the radius
of her trunk, which may be taken to be 15 cm. The moment of inertia is:

I = Icyl + 2mr2 =
1
2
MR2 + 2mr2

where we have added the moment of inertia of a cylinder with two point
masses. Calculate the before and after.

Ibef =
1
2
· 40 · 0.152 + 2 · 5 · 0.42 = 0.45 + 1.6 = 2.05 kg ·m2

Iaft = 0.45 + 2 · 5 · 0.12 = 0.55 kg ·m2

Now, use conservation of angular momentum:

Lbef = Laft

Ibefωbef = Iaftωaft

ωaft =
Ibef

Iaft
ωaft =

2.05
0.55

· 2π

ωaft = 3.72ωbef = 7.44π rad/sec

Crude calculation, but now I understand how those skaters do those fantas-
tic spins. The arms and legs are not that heavy compared to the body, but
the r2 term makes a big difference. Quadrupling the speed of the initial
spin may be an overestimate, but probably doubling is not that uncommon.
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Chapter 3

Gravitation

3.1 Newton’s law of gravity

During the years of the bubonic plague, Newton came up with his famous
theory of gravity. This is the only possible force law allowing for elliptical
orbits with the sun at one focus of the ellipse:

~F = −GmM

r2
r̂ (3.1)

G = 6.6x10−11kg −m3/s2 , the gravitation constant

r = the distance between the two objects
m= mass of one object–say the object of interest
M= mass of the other object
r̂= a unit vector pointing from central object towards the object of interest.

The negative sign means the force is attractive. It is possible to grasp
the law intuitively in terms of concentric spheres and numbers of elementary
particle masses, but that won’t be taken up here. The gravitation constant,
G, is presumably the same throughout all time and space, though there has
been speculation that it might change with time.

Close to the earth, the distance from an object to the center of the
earth,r, doesn’t change much, so the gravity force can be modeled as in
previous chapters, with F = mg. The acceleration of gravity near the
surface of the Earth, g, is given by

g =
GM

R2
E

23
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where M is the mass of the earth, and RE is the radius of the Earth. In a
similar way, the surface acceleration can be found for any world.

When there are several bodies, it’s just a matter of computing all the
different forces created.

3.2 Potential Energy and Elementary Orbital
Mechanics

The potential energy of gravity is given by

U = −GmM

r
(3.2)

Note that
F =

−dU

dr
= −mMG

r2

as it should. We’re now ready to apply this law to a study of satellite,
planetary, and rocket motion.

3.2.1 Satellite motion and escape velocity

F or a satellite in circular motion about another body such as the Earth,
there are a number of interesting relationships that are easy to derive. Using
Newton’s laws, we obtain

mar = −mv2

r
=
−GmM

r

⇒ vcirc =

√
GM

r

A common, crazy, and inaccurate way to say this is that the ”centrifugal”
and gravitational forces balance: what’s really happening is that the gravity
force, providing a centripetal force, bends the path of the particle, which
otherwise would be a straight line.

The Period of the satellite is the amount of time it takes to go around
the Earth (or other body) once. We can easily find the period T , since

v =
d

T
=

2πr

T

where we’ve used the distance around a circle, 2πr. Combine this and the
equation for velocity in a circular orbit, getting

2πr

T
=

√
GM

r
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Solve for T:

T =
2πr3/2

√
GM

This is almost a statement of Kepler’s Third Law. Squaring it, obtain:

T 2 =
4π2r3

GM

This is the classic form of Kepler’s third law of planetary motion, except
in this case it’s specialized to the case of circular motion. To get his law,
r → a, where a is the so- called semi-major axis, to be discussed again
shortly. In the case of circular motion, the radius is equal to the semi-major
axis

Next, let’s look at another problem, that of escape velocity. Starting at
Cape Canaveral, what velocity would be necessary to escape the Earth’s
pull of gravity? We use conservation of energy:

∆K + ∆Pgrav = 0
(

0− 1
2
mv2

esc

)
+

(
0− −GmM

R

)
= 0

vesc =

√
2GM

R

Here M and R are the mass and radius of the Earth, respectively. Thus,
for the Earth, escape velocity is about 11, 000 m/s.

3.3 Lunar Trajectories

Computing the energy difference between two circular orbits, combined
with the equation for rocket ∆v discussed in the chapter on Impulse and
Momentum, can give a quick and reasonably accurate estimate of the fuel
requirements for effecting the orbital transfer. A single, rather hard-to-
derive equation, however, will allow fairly sophisticated calculations right
away. The equation is

E

m
= −MG

2a
(3.3)

E = the energy of the orbit m = the mass of the spacecraft M = the mass

of the world the spacecraft is orbiting. a = the semi-major axis, which is
defined by

a =
1
2

(rp + ra) (3.4)
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rp is the closest point of approach, called perihelion for solar orbits and
perigee for Earth orbits. ra is the furthest point away. The derivation
of this equation is fairly difficult, and will be taken without proof, here.
To illustrate the technique of calculating space missions, we’ll now look at
Lunar Trajectories. The next example gives the prototype for all missions.
More exact calculations are required for an actual mission, of course.

Example: Lunar Transit Suppose a rocket is traveling in low Earth orbit
250 km above the surface, and you desire to transit to an orbit as far away
as the moon. What is the approximate necessary ∆v ?

Solution: Again, we use conservation of energy. Basically, we calculate our
total energy in Earth orbit, after the burn, then the total energy in the other
orbit. We assume the rockets are fired tangentially to the orbit, and that
the change in position is negligible during the firing. Our rocket engines
will have to provide the necessary difference in energy. This energy would
ordinarily be applied in two steps: (1) tangentially to the original orbit,
putting our spacecraft into an ellipse with apogee at the desired distance
(2) at apogee, when another firing of the engine would be necessary to
circularize our orbit.

Here, we’re interested in obtaining ball park numbers. Therefore, we’ll
assume the entire impulse is obtained in one firing of the engines. Below,
we work in terms of C=E/m; remember, the mass at the end of the thrust
phase will be the same as that in the new orbit.

C0 = E0/m =
1
2
v2
0 −

GM

r0

1
2

GM

r0
− GM

r0
=
−1
2

GM

r0

Cf is found similarly. Then

∆C = Cf − C0 =
GM

2

(
1
r0
− 1

rf

)

Note the use of the relationship for circular velocity in the above equation.

1
2

(v0 + ∆v)2 − 1
2
v2
0 = ∆C

∆v =
√

2∆C + v2
0 − v0

Plugging in the numbers, we obtain, for transition from a circular orbit at
250 km (don’t forget to add the radius of the Earth!) to a circular orbit at
380,000 km,

∆v = 3, 167 m/s.
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Now, using the rocket equation, we find that the space shuttle can reach
the moon with an approximately one-quarter tank refueling in Earth orbit!
To wit:

∆v = vex ln
(

ms + 0.25mfuel

ms

)

ms = 140, 000 kg mfuel = 720, 000 kg vex = 4, 500 m/s

∆v = 3, 720 m/s

ms is the mass of the orbiter and payload, together with the mass of the
external tank. With a light load, there’d be no problem getting back to
Earth, given the moon’s weak gravity field.

3.4 Interplanetary Trajectories

We now wish to design a mission to another planet. We don’t need to be
very precise: we’re going to think big, and get ball park numbers that in
fact will be extremely good for predicting approximate size of space craft,
payload, fuel, and so forth. The numbers are probably good to within plus
or minus twenty-five per cent.

Our first target is the red planet, MARS. We use the equations devel-
oped in the previous section. Our spacecraft will transit from Earth orbit to
Solar orbit, to Mars orbit. We’d like to use off-the-shelf technology, so first
we’ll take the Space Shuttle, fully refueled in Earth orbit. Subsequently,
we’ll replace the SSME’s with a nuclear reactor, and use hydrogen only as
the fuel. Can the space shuttle really make it all the way to Mars? Let’s
find out.

First, calculate the approximate energy per unit kilogram required to tran-
sit from a solar orbit at 150 billion meters (the Earth’s distance from the
sun) to the orbit of Mars, 226 billion meters. Using the same equations as
in the previous section, we find

∆C = CM − CE =
GMsun

2

(
1

rM
− 1

rE

)
= 1.5× 1011 m2/s2

A spacecraft in a solar orbit at Earth’s orbital radius has the same velocity
as the Earth, 29.8 km/s. Taking this to be v0, we find

∆v =
√

2∆C + v2
0 − v0 = 34, 494− 29, 800 = 4, 694 m/s

Now, we’re going to return to the Earth escape velocity equation, except
this time we want to not only escape the Earth, but also have a ”hyper-
bolic” excess velocity of 4,694 m/s. Alternatively, we could escape Earth’s
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influence with one burn and then have another burn to transit to Mars,
but this is inefficient. If you’ve got your druthers, it’s better to get the
∆v = 4, 694m/s all at once at the outset. Remember ∆p =

∫
Fdt ? By

going faster at the outset, less time is spent in the region where gravity
is strong, so there is less reduction of momentum due to the impulse of
gravity. With orbital velocity around the Earth of 7,761 m/s, we find that
to get 4,694 m/s excess, we need only

1
2
v2

h −
1
2

(v0 + ∆v)2 +
(

0 +
GME

r0

)
= 0

⇒ ∆v =
√

2GME

r0
+ v2

h − v0 = 11, 937− 7, 761 = 4, 176 m/s

Now, again assuming a single burn to get to Mars orbit from our parking
orbit around Earth–and being sure to point the rocket and fire it when we’re
going with the Earth, so as to add our velocity to the Earth’s– (otherwise
we’d hop onto an orbit heading inward toward Venus and Mercury!)–let’s
get an estimate for the range of a fully refueled Space Shuttle in a 250 km
orbit.

∆V = 4, 176 m/s = vex ln
(

m0

m0 −mb

)
⇒ mb = 0.6m0 = 520, 000 kg.

So 520,000 kg. of fuel must be burned to get the required ∆v . Coming
back will require a similar energy change, except our load is lightened.
Obtain

4, 196 m/s = ∆v = vex ln
(

m0 −mb

m0 −mb −mr

)
⇒ mr = 205, 574 kg

The total fuel consumed would therefore be about 726,000 kg, about the
same amount as carried in the external tank. Strap on a couple of small
boosters in Earth orbit, and there wouldn’t be any sweat!

How about using nuclear hydrogen rockets, with a similar configuration?
I’ll let you work out the details. I calculate you’d need about half a million
kilograms of hydrogen, assuming an exhaust velocity of 9,000 m/s. This
would essentially allow an extra couple hundred thousand kilos for extra
supplies and a Mars lander.

How about travel time? Except for simple ellipses with apogee at the
target planet, this is a complicated problem. So for the simplest case, we
have

4π2

T

2

=
(

GMsun

a

)3
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Here, T is the period (time to go all the way around once), and ”a” is the

semi-major axis of the ellipse, which is the perihelion plus aphelion divided
by 2. For our Mars mission, obtain

T = 2π

√
a3

GMsun
= 2π

√
(1.5× 1011 + 2.27× 1011) /2)3

GMsun

= 44, 511, 409 s. = 515 days = 17 months

Half of this is the time of flight, or about eight and a half months.

3.5 Apparent reduction of weight due to ro-
tation

Example: Suppose you’re on a planet with twice the mass of Earth and
radius of 3,000 km., and suppose it rotates on its axis once every 300 sec-
onds. What is your apparent weight?

Solution:

ma = −mv2

R
= −mg + N

N = mg − mv2

R
= m

(
g − v2

R

)
= m(31.92− 15.23) = 16.6 m

So thanks to the rapid rotation, the apparent weight is only one and a half
gees. Without the rotation, we’d be putting up with 3 gees.

3.6 Black Holes

For a given, highly compact mass, how far away do you have to be to be
able to escape? We can actually get the correct result by a naive application
of conservation of energy. The fastest anything can go is c, the speed of
light, so

∆K + ∆Ugrav = 0(
0− 1

2
mc2

)
+

(
GMm

Rs
− 0

)
= 0

Rs =
2MG

c2

Rs is called the Schwarzschild radius. For a black hole with the same mass
as the sun, this radius is about 3 kilometers.
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3.7 Einstein’s Theory of Gravity

3.8 Examples

Example 4. A satellite is in circular orbit 30,000 km from the center of
the Earth. (A) How fast is it going? (B) How long does it take to complete
one orbit?

Solution: This is just like the example give in the corresponding section.
For circular obits, we have

vcirc =

√
MG

r
=

√
5.98× 1024 · 6.67× 10−11

30× 106
=

=
√

1.33× 107 = 3, 646 m/s

To get the period, plug into

v =
d

T
==

2πr

T
→ T =

2πr

v
=

2π30× 106

3, 646

T = 5, 170 sec

Example 5. Find the location of geosynchronus orbit, the distance
where a satellite will be fixed over one spot on the Earth’s surface.

Example 2. A satellite is to circle the Earth once every two hours.
(A) How far away from the center of the Earth is it? (B) What’s the speed
of the satellite?

3.9 Storage

Example: Lunar Transit Suppose a rocket is traveling in low Earth orbit
250 km above the surface, and you desire to transit to an orbit as far away
as the moon. What is the approximate necessary ∆v ?

Solution: Again, we use conservation of energy. Basically, we calculate our
total energy in Earth orbit, after the burn, then the total energy in the other
orbit. We assume the rockets are fired tangentially to the orbit, and that
the change in position is negligible during the firing. Our rocket engines
will have to provide the necessary difference in energy. This energy would
ordinarily be applied in two steps: (1) tangentially to the original orbit,
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putting our spacecraft into an ellipse with apogee at the desired distance
(2) at apogee, when another firing of the engine would be necessary to
circularize our orbit.

Here, we’re interested in obtaining ball park numbers. Therefore, we’ll
assume the entire impulse is obtained in one firing of the engines. Below,
we work in terms of C=E/m; remember, the mass at the end of the thrust
phase will be the same as that in the new orbit.

C0 = E0/m =
1
2
v2
0 −

GM

r0

1
2

GM

r0
− GM

r0
=
−1
2

GM

r0

Cf is found similarly. Then

∆C = Cf − C0 =
GM

2

(
1
r0
− 1

rf

)

Note the use of the relationship for circular velocity in the above equation.

1
2

(v0 + ∆v)2 − 1
2
v2
0 = ∆C

∆v =
√

2∆C + v2
0 − v0

Plugging in the numbers, we obtain, for transition from a circular orbit at
250 km (don’t forget to add the radius of the Earth!) to a circular orbit at
380,000 km,

∆v = 3, 167 m/s.

Now, using the rocket equation, we find that the space shuttle can reach
the moon with an approximately one-quarter tank refueling in Earth orbit!
To wit:

∆v = vex ln
(

ms + 0.25mfuel

ms

)

ms = 140, 000 kg mfuel = 720, 000 kg vex = 4, 500 m/s

∆v = 3, 720 m/s

ms is the mass of the orbiter and payload, together with the mass of the
external tank. With a light load, there’d be no problem getting back to
Earth, given the moon’s weak gravity field.
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3.10 Interplanetary Trajectories

We now wish to design a mission to another planet. We don’t need to be
very precise: we’re going to think big, and get ball park numbers that in
fact will be extremely good for predicting approximate size of space craft,
payload, fuel, and so forth. The numbers are probably good to within plus
or minus twenty-five per cent.

Our first target is the red planet, MARS. We use the equations devel-
oped in the previous section. Our spacecraft will transit from Earth orbit to
Solar orbit, to Mars orbit. We’d like to use off-the-shelf technology, so first
we’ll take the Space Shuttle, fully refueled in Earth orbit. Subsequently,
we’ll replace the SSME’s with a nuclear reactor, and use hydrogen only as
the fuel. Can the space shuttle really make it all the way to Mars? Let’s
find out.

First, calculate the approximate energy per unit kilogram required to tran-
sit from a solar orbit at 150 billion meters (the Earth’s distance from the
sun) to the orbit of Mars, 226 billion meters. Using the same equations as
in the previous section, we find

∆C = CM − CE =
GMsun

2

(
1

rM
− 1

rE

)
= 1.5× 1011 m2/s2

A spacecraft in a solar orbit at Earth’s orbital radius has the same velocity
as the Earth, 29.8 km/s. Taking this to be v0, we find

∆v =
√

2∆C + v2
0 − v0 = 34, 494− 29, 800 = 4, 694 m/s

Now, we’re going to return to the Earth escape velocity equation, except
this time we want to not only escape the Earth, but also have a ”hyper-
bolic” excess velocity of 4,694 m/s. Alternatively, we could escape Earth’s
influence with one burn and then have another burn to transit to Mars,
but this is inefficient. If you’ve got your druthers, it’s better to get the
∆v = 4, 694m/s all at once at the outset. Remember ∆p =

∫
Fdt ? By

going faster at the outset, less time is spent in the region where gravity
is strong, so there is less reduction of momentum due to the impulse of
gravity. With orbital velocity around the Earth of 7,761 m/s, we find that
to get 4,694 m/s excess, we need only

1
2
v2

h −
1
2

(v0 + ∆v)2 +
(

0 +
GME

r0

)
= 0

⇒ ∆v =
√

2GME

r0
+ v2

h − v0 = 11, 937− 7, 761 = 4, 176 m/s
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Now, again assuming a single burn to get to Mars orbit from our parking
orbit around Earth–and being sure to point the rocket and fire it when we’re
going with the Earth, so as to add our velocity to the Earth’s– (otherwise
we’d hop onto an orbit heading inward toward Venus and Mercury!)–let’s
get an estimate for the range of a fully refueled Space Shuttle in a 250 km
orbit.

∆V = 4, 176 m/s = vex ln
(

m0

m0 −mb

)
⇒ mb = 0.6m0 = 520, 000 kg.

So 520,000 kg. of fuel must be burned to get the required ∆v . Coming
back will require a similar energy change, except our load is lightened.
Obtain

4, 196 m/s = ∆v = vex ln
(

m0 −mb

m0 −mb −mr

)
⇒ mr = 205, 574 kg

The total fuel consumed would therefore be about 726,000 kg, about the
same amount as carried in the external tank. Strap on a couple of small
boosters in Earth orbit, and there wouldn’t be any sweat!

How about using nuclear hydrogen rockets, with a similar configuration?
I’ll let you work out the details. I calculate you’d need about half a million
kilograms of hydrogen, assuming an exhaust velocity of 9,000 m/s. This
would essentially allow an extra couple hundred thousand kilos for extra
supplies and a Mars lander.

How about travel time? Except for simple ellipses with apogee at the
target planet, this is a complicated problem. So for the simplest case, we
have

4π2

T

2

=
(

GMsun

a

)3

Here, T is the period (time to go all the way around once), and ”a” is the

semi-major axis of the ellipse, which is the perihelion plus aphelion divided
by 2. For our Mars mission, obtain

T = 2π

√
a3

GMsun
= 2π

√
(1.5× 1011 + 2.27× 1011) /2)3

GMsun

= 44, 511, 409 s. = 515 days = 17 months

Half of this is the time of flight, or about eight and a half months.
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3.11 Apparent reduction of weight due to ro-
tation

Example: Suppose you’re on a planet with twice the mass of Earth and
radius of 3,000 km., and suppose it rotates on its axis once every 300 sec-
onds. What is your apparent weight?

Solution:

ma = −mv2

R
= −mg + N

N = mg − mv2

R
= m

(
g − v2

R

)
= m(31.92− 15.23) = 16.6 m

So thanks to the rapid rotation, the apparent weight is only one and a half
gees. Without the rotation, we’d be putting up with 3 gees.

3.12 Black Holes

For a given, highly compact mass, how far away do you have to be to be
able to escape? We can actually get the correct result by a naive application
of conservation of energy. The fastest anything can go is c, the speed of
light, so

∆K + ∆Ugrav = 0
(

0− 1
2
mc2

)
+

(
GMm

Rs
− 0

)
= 0

Rs =
2MG

c2

Rs is called the Schwarzschild radius. For a black hole with the same mass
as the sun, this radius is about 3 kilometers.


